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Abstract 

This report presents experimental data on electrochemical potential and corrosion rates 
of the materials found in the reactor pressure vessel head and control rod drive mechanism 
(CRDM) nozzles in boric acid solutions of varying concentrations at temperatures of 95–316°C 
(203–600°F).  Tests were conducted in (a) high–temperature, high–pressure aqueous solutions 
with a range of boric acid concentrations, (b) high-temperature (150–316°C) H-B-O solutions at 
ambient pressure, wetted and dry, and (c) low–temperature (≈95°C) saturated, aqueous, boric 
acid solutions.  These correspond to the following situations: (a) low leakage through the nozzle 
and nozzle/head annulus plugged, (b) low leakage through the nozzle and nozzle/head 
annulus open, and (c) significant cooling due to high leakage and nozzle/head annulus open.  
The results indicate significant corrosion only for the low–alloy steel and no corrosion for 
Alloy 600 or 308 stainless steel cladding.  Also, corrosion rates were significant in saturated 
boric acid solutions, and no material loss was observed in boric acid melts or deposits in the 
absence of moisture.  The results are compared with the existing corrosion/wastage data in the 
literature. 
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Foreword 

In the aftermath of the discovery of a corrosion cavity in the vessel head at the Davis-Besse Nuclear 
Power Station in March 2002, the U.S. Nuclear Regulatory Commission (NRC) renewed its effort to 
understand the mechanics and chemistry that occur during the corrosion process.  Based on the results of 
corrosion testing over the preceding 15 or so years, the prevailing thinking at that time was that corrosion 
in an aqueous-based solution could not occur at an elevated temperature, because water would evaporate 
and dry boric acid salts were “known” to be non-corrosive.  However, such thinking did not account for 
the corrosion rates that had prevailed on the Davis-Besse reactor head.  Against that background, the 
NRC’s Office of Nuclear Regulatory Research, together with Argonne National Laboratory, completed a 
test program to determine the corrosion rates of important reactor structural materials over a wide range 
of temperatures and boric acid solution concentrations.  This report presents the resultant corrosion rate 
and electrochemical potential data. 

 
As part of the investigation of the Davis-Besse reactor head corrosion event, industry analysts 

developed a model that suggested that the evaporative cooling effect would reduce the temperature of the 
pool of accumulating liquid to about 93 °C (200 °F) as the leak rate approached and exceeded about 0.4 
liter (0.1 gallon) per minute.  This finding is important because this temperature is significantly cooler 
than assumed in earlier testing and does not support the thinking that an aqueous-based boric acid 
solution would not exist because the water would evaporate.  This report contains data showing that 
corrosion rates of low-alloy steel at that temperature are a strong function of solution concentration, and 
reach about 100 mm (3.9 inches) per year in saturated solutions.  Further, this report describes, for the 
first time, tests in slightly wetted boric acid salts at temperatures of 150 °C (302 °F) and 170 °C (338 °F).  
The data from these tests show that corrosion rates of low-alloy steel in this mixture can actually exceed 
those of aqueous solutions, reaching 125 mm (4.9 inches)  to 150 mm (5.9 inches) per year at 
150 °C (302 °F). 

 
On a positive note, this report contains data showing that stainless steel cladding materials and 

Alloy 600 do not corrode significantly in any combination of temperature and solution concentration 
tested within the scope of this program.  Likewise, the electrochemical potential (ECP) values for the 
materials and solutions tested in this program support the conclusion that ECP differences among the 
relevant combinations of structural materials are too small to give rise to the possibility of any significant 
galvanic reactions. 

 
The data derived from this study will expand the existing database of corrosion rates for reactor 

structural materials in boric acid solutions, and much of the data will be included in the Boric Acid 
Corrosion Guidebook (Reference 5).  Nonetheless, when applying any conclusions based on these data, 
users should remain within the bounds of the tested parameters; extrapolation of these results could lead 
to erroneous conclusions.  Users should also be aware that composition differences among reactor and 
low-carbon steels could result in inaccurate estimates of corrosion rates for materials that were not 
actually tested in this program. 

 
_______________________________ 
Carl J. Paperiello, Director 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
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Executive Summary 

In March 2002, during inspections at the Davis-Besse (D-B) nuclear power station in 
response to NRC Bulletin 2001-01, axial cracks were identified in five control rod drive 
mechanism (CRDM) nozzles near the J–groove weld.  Also, significant degradation of the reactor 
pressure vessel (RPV) head base metal was discovered downhill of nozzle #3; a triangular 
cavity, ≈127 mm (5 in.) width and 178 mm (7 in.) long and completely through the low-alloy 
steel RPV head thickness (≈178 mm), had been created.  Although cracking of Alloy 600 CRDM 
nozzles by primary water stress corrosion cracking (PWSCC) is a known degradation 
mechanism and has been observed at other nuclear power plants, damage of this magnitude to 
the RPV head caused by boric acid corrosion had not been anticipated.  In the other instances 
of CRDM nozzle cracking, total leakage from the crack into the annulus appears to have been 
very low and occurred at very low leakage rates.  At low leak rates (≈10-6 to 10-5 gpm), the 
leaking flow completely vaporizes to steam immediately downstream from the principal flashing 
location resulting in a dry annulus and no loss of material.  The D-B experience demonstrates 
that this is not always the case. 

It is important to understand the conditions that can result in this aggressive attack.  The 
critical issue is why the leaking nozzle #3 at D-B progressed to high leak rates and significant 
RPV head wastage.  Corrosion/wastage of RPV steel in concentrated boric acid solutions is not 
well described or quantified in the literature, and especially not under the temperature, flow, 
and concentration of species that may have occurred on the D-B head.  The electrochemical 
potentials (ECPs) of the alloys in the aqueous solutions involved are also not known.  

This report presents experimental data on ECP and corrosion/wastage rates of the 
materials found in the RPV head and nozzles of the D–B reactor in boric acid solutions of 
varying concentrations at temperatures of 95–316°C (203–600°F).  Tests were conducted in 
environmental conditions that have been postulated in the CRDM nozzle/head crevice: (i) high–
temperature, high–pressure aqueous environment with a range of boric acid solution 
concentrations; (ii) high-temperature (150–300°C) boric acid powder at atmospheric pressure 
with and without the addition of water; and (iii) low–temperature (≈95°C) saturated boric acid 
solution both deaerated and aerated.  These environmental conditions correspond to the 
following situations: (a) low leakage through nozzle crack and nozzle/head annulus plugged, 
(b) low leakage through nozzle crack and nozzle/head annulus open, and (c) significant cooling 
due to high leakage through nozzle crack and nozzle/head annulus open.   

Test facilities were assembled to perform ECP and corrosion rate measurements on 
A533 Gr.–B low–alloy steel, Alloy 600, and 308 SS weld clad, in the various postulated 
environments in the CRDM nozzle/head crevice.  In general, the ECP of all alloys decreased 
with an increase in temperature.  At temperatures below 150°C the ECP of A533 Gr.–B low–
alloy steel was significantly lower than that of the other alloys.  Also, at 95°C, the ECP of 
A533 Gr.–B steel decreased slightly as the concentration of boric acid in the solution was 
decreased from 36,000 ppm to 3,500 ppm.  At 150–316°C and 12.4 MPa (1800 psi) pressure, 
the ECP of all alloys are comparable in water with 1000 or 9090 ppm B, ≈2 ppm Li, <10 ppb 
dissolved oxygen (DO), and ≈2 ppm dissolved hydrogen. 

In the various environments investigated in the present study, the corrosion rates of 
Alloy 600 and 308 SS cladding were found to be negligible compared to those of A533 Gr.–B 
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steel.  Also, in the absence of moisture, no corrosion was observed for any of the materials in 
H–B–O environments at 150, 260, and 300°C; the H–B–O environments consist of a dry powder 
of HBO2 + H3BO3 at 150°C, molten HBO2 at 260°C, and molten mixture of HBO2 + B2O3 at 
300°C.   

For A533 Gr.–B steel, an average corrosion rate of ≈40 mm/y (1.6 in./y) was measured in 
aerated saturated solution of boric acid at 97.5°C and ambient pressure.  The corrosion rate in 
aerated half–saturated solution was a factor of ≈2 lower than in saturated solution; the rates 
for deaerated solution were ≈40% lower than in aerated solution.  Very high corrosion rates 
were observed for A533 Gr.–B steel at 140–170°C in molten salt solutions of boric acid with 
addition of water.  Corrosion rates up to 150 mm/y were measured at 150°C.   

The corrosion experiments in high–temperature high–pressure water containing 
9090 ppm B, ≈2 ppm Li, <10 ppb DO, and ≈2 ppm dissolved hydrogen showed that the 
corrosion rates decreased with increasing temperature.  The rates were ≈5 mm/y at 100–150°C 
and decreased to <0.1 mm/y at 316°C.  

The existing corrosion/wastage data in the literature have been summarized.  The results 
from the present study have been compared with the available data to assess the corrosion 
performance of the RPV and CRDM nozzle materials in boric acid solutions. 
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